DIY Spin Column Protocol

Description

A spin-column DNA extraction method using homemade buffers and silica spin columns/plates from Epoch in the USA, costs around 20cents AUD per sample.

What you need

Spin columns

available from Epoch

Ethanol Tris EDTA SDS Ammonium Acetate Proteinase K RNAse Clean water 96 well square deep plate (2ml) to collect waste Example 96 well round deep plate (1ml) to elute DNA into for storage Example

Protocol

It's easiest to do 200 individuals at a time in two 96 well plates. If you do this they stay balanced and you don't need to discard the flow through after each step.

96 well version

- 1. Homogenise tissue in the beadmill.
- 2. Mix 40ml of Lysis buffer and 400µl of Proteinase K (10mg/ml).
- 3. Add 200 μl of Lysis buffer/ProK mix to each sample.
- 4. Incubate at 50°C for 2hrs/overnight
- 5. Add 2µl RNAse (10mg/ml) to each sample
- 6. Incubate at 37°C for 30mins
- 7. Add 200µl Binding Buffer and 200µl Ethanol to each sample
- Tranfer all 600µl of Lysate Binding buffer and Ethanol to the 96 well silica plate (sitting on top of a 2ml deepwell plate)
- 9. Spin on high speed for 4 minutes
- 10. Dispose of flow-through and add 500 μl of wash buffer
- 11. Spin on high speed for 2 mins
- 12. Discard flow through and add another 500µl of wash buffer
- 13. Spin on high speed for 15 mins to make sure membrane is dry
- 14. Platce the silica plate on the 1ml deep well plate for elution

- 15. Add 100 μl of elution buffer to each well and incubate @ room temperature for 2 mins
- 16. Spin on high speed for 1 min

Individual columns

- 1. Homogenise tissue in the beadmill.
- 2. Add 200 μI of Lysis buffer and 2 μI ProK
- 3. Incubate at 50°C for 2hrs/overnight
- 4. Add $2\mu I RNAse$ (10mg/mI) to each sample
- 5. Incubate at 37°C for 30mins
- 6. Add 200µl Binding Buffer and 200µl Ethanol to each sample
- 7. Tranfer all $600\mu l$ of Lysate Binding buffer and Ethanol to the column/collection tube
- 8. Spin on high speed for 1 minutes
- 9. Dispose of flow-through (tip out of collection tube) and add $500\mu l$ of wash buffer
- 10. Spin on high speed for 1 mins
- 11. Discard flow through and add another $500\mu l$ of wash buffer
- 12. Spin on high speed for 1 min
- 13. Place the spin column on a new collection tube / eppie
- 14. Spin on high for 2 mins
- 15. Place the spin column on a clean eppie
- 16. Add 100 μl of elution buffer to each column and incubate @ room temperature for 2 mins
- 17. Spin on high speed for 1 min

Recipes

Lysis Buffer (1 litre)

10mM Tris 2mM EDTA 1% SDS

1M Tris-HCl pH 7.5	10ml
0.5M EDTA	4ml
SDS (sodium dodecyl sulphate)	100ml of 10%
make up to 1L with clean H ₂ O	

Binding buffer (1 litre)

3M GuHCl 3.75M NH₄Ac pH 6

Guanidine Hydrochloride	573.18g
Clean H ₂ O	500ml
7.5M Ammonium Acetate	500ml
Adjust pH to 6 using glacial Acetic acid	

See $\ensuremath{\mathsf{HERE}}$ for notes on different binding buffer options.

Wash Buffer (1 litres)

10 mM Tris-HCl pH 7.5, 80% ethanol

1M Tris-HCl pH 7.5	10ml
96% ethanol	800ml
Clean H ₂ O	190ml

Elution Buffer (500ml)

10mM Tris-Cl, pH 8.5

1M Tris-HCl pH 8.5	5ml
Ultrapure DNAse and RNAse free H ₂ O	495ml

Main Page